Данный метод доказал свою эффективность в ходе лабораторных исследований, нацеленных на изучение уровня редукции бактериальной контаминации в специально обсеменённых каналах с высокой концентрацией микроорганизмов. Важным аспектом данного алгоритма является правильное введение фотосенсибилизатора и обеспечение достаточного времени для того, чтобы последний вступил в контакт с микроорганизмами, ведь в противном случае эффект фотосенсибилизации будет сведен к нулю. Кроме того, преимущество фотосенсибилизации состоит еще и в том, что она является одинаково эффективной как против отдельных бактерий и их групп в растворе ирригатора, так и против биопленки, сформировавшейся на стенках канала. В данное время исследования ведутся над тем, чтобы усовершенствовать данный подход с использованием биоактивных наполнителей и наночастиц. Пока что фотоактивированная дезинфекция не может быть рекомендована как альтернатива классическом подходу, но может считаться качественным и достаточно успешным дополнением к стандартным протоколам дезинфекции корневых каналов.
Лазер
Одним из главных недостатков нынешних эндодонтического ирригантов является то, что их бактерицидный эффект ограничивается в основном пространством магистрального корневого канала. В практической эндодонтии для дезинфекции эндопростраства было предложено использовать сразу несколько типов лазеров: диодный, углекислотный, неодимовый, эрбиевый. Бактерицидное действие лазера зависит от характеристик длины световой волны и ее энергии, и, кроме прочего, обеспечивается еще и тепловым эффектом. Тепловой эффект, индуцированный лазером, провоцирует изменения в клеточной стенке бактерий, что, в свою очередь, вызывает изменения осмотических градиентов вплоть до гибели самой клетки. Некоторые исследования пришли к выводу, что лазерное облучение является не альтернативой, а скорее возможным дополнением к существующим протоколам эндодонтической подготовки корневых каналов. Учитывая, что энергия лазерного излучения направлена вдоль оптического волокна, для ее более трехмерного распространения были разработаны разные системы доставки: некоторые из них состоят из основной трубки, в которой имеются латеральные отверстия, которые обеспечивают изменение направления лазерного излучения из строго вертикального в более латеральное. Подобные модификации позволяют лазеру достичь бактерий даже в толще дентинных тубул, но как бы ни было, лазер сам по себе не обеспечивает такой тотальной очистки корневой стенки от бактериальной биопленки, как, например, гипохлорит натрия. Кроме того, широкое использование достаточно мощных для эндодонтической дезинфекции лазеров является пока недоступным в широкой стоматологической практике ввиду целого ряда объективных причин.
Озон
Озон является неустойчивой формой кислорода, легко растворимой в воде и достаточной реактивной для того, чтобы окислять клетки микроорганизмов. Было высказано предположение о том, что озон обладает достаточно высокой противомикробной эффективностью, не вызывая при этом лекарственной резистентности у организма. Тем не менее, результаты имеющихся исследований относительно его эффективности против эндодонтических патогенов достаточно противоречивы, особенно в отношении биопленки, но никак не сопоставимы с уникальными возможностями гипохлорита натрия.
Альтернативные антибактериальные системы
Наночастицы
Наночастицы представляют собой микроскопические частицы размером от 1 до 100 нм, которые обладают уникальными противовоспалительными и антибактериальными свойствами, и при этом вызывают куда меньшую резистентность организма по сравнению с традиционными антибиотиками. Так к примеру, наночастицы оксида магния, оксида кальция или оксида цинка обладают бактериостатическими и бактерицидными свойствами: они генерируют активные формы кислорода, которые отвечают за антибактериальный эффект путем электростатического взаимодействия между положительно заряженными наночастицами и отрицательно заряженными бактериальными клетками, что в результате приводит к накоплению большого количества наночастиц на поверхности бактериальной клеточной мембраны с последующим увеличением ее проницаемости. Последнее в конце концов и провоцирует гибель самой клетки. Наночастицы, синтезированные из порошков серебра, оксида меди или оксида цинка, также обладают достаточно высокой антимикробной активностью. Кроме того, наночастицы могут изменять химические и физические свойства дентина, снижая при этом показатели прочности адгезии бактерий к стенке корневого канала, таким образом, ограничивая возможности для повторной контаминации микроорганизмов и формирования новой структуры биоплёнки. В любом случае, возможный успех применения наночастиц в эндодонтии будет существенно зависеть от того, каким образом будет модифицирован механизм их доставки в наиболее труднодоступные участки корневого канала.
Биоактивное стекло
В последнее время биоактивное стекло или биоактивная стеклокерамика все чаще стают предметом значительного интереса в эндодонтической отрасли, учитывая их достаточно высокие антибактериальных свойства. Но результаты исследований, посвященных данному вопросу, пока что достаточно противоречивы для формулировки каких-то однозначных выводов.
Натуральные растительные экстракты
Среди натуральных растительных экстрактов могут быть получены вещества, содержащие полифенольные молекулы, которые часто используются для долговременного хранения продуктов питания. Хотя некоторые из данных соединений характеризуются незначительным антибактериальным эффектом, но отдельные все же демонстрируют значительную способность редуцировать образование биопленки, хоть механизм, с помощью которого это происходит, пока еще сложно объяснить в полной мере.
Методы безиструментальной обработки
Впервые безинструментальную технику обработки корневого канала предложил Lussi. Авторский метод не предусматривал расширения корневых каналов или другой его механической очистки, кроме как ирригации эндопространства раствором NaOCl низкой концентрации с последующим удалением ирригганта при помощи вакуумного насоса, а также использование электрического поршня, который воссоздавал участки переменного давления внутри самого канала. Последнее в свою очередь вызывало эффект имплозии образовавшихся пузырьков и соответствующую гидродинамическую турбулентность, которая способствовала проникновению NaOCl в латеральные корневые ответвления. В конце подобной обработки канал заполнялся цементом, но, учитывая низкую эффективность подобного подхода, он так и не нашел своего широкого применения. Совсем недавно в практику был введен новый подход с использованием широкого спектра звуковых волн, распространяющихся по структуре ирриганта и позволяющих провести эффективное удаление тканей пульпы, эндодонтического дебриса и имеющихся микроорганизмов. В одном из исследований даже было доказано, что данная техника обеспечивает лучшие результаты обработки, нежели классический алгоритм химико-механической очистки корневого пространства. Но для аргументации использования данной техники требуется проведение еще ряда дополнительных исследований с целью изучения возможностей предложенного подхода, как минимально инвазивной методики, не требующей инструментального препарирования эндопространства.
Выводы
Согласно современным представлениям, эндодонтическая патологии по своей сути является инфекционным поражением, спровоцированным комплексом бактерий и, в частности, действием их организованной структуры в форме биопленки. С биологической точки зрения, эндодонтическое лечение должно быть направлено именно на устранение микроорганизмов и предотвращение риска повторной контаминации, но, к сожалению, система корневых каналов с их анатомическими особенностями представляет собой достаточно сложную среду, устранение бактерий из которой является весьма сложной клинической задачей. Химико-механическая оработка корневого канала состоит из механической очистки эндопространства с параллельным проведением его орошения антибактериальными агентами. Усовершенствование механического этапа эндопрепарирования обеспечило новые возможности для улучшения подходов формирования эндодонтического пространства с гораздо меньшим количеством процедурных осложнений. В свою очередь, ирригация корневого канала также может проводиться с использованием значительного количества химических веществ, однако, даже несмотря на современные достижения, проблемными вопросами эндодонтии остаются аспекты доставки ирриганта к апикальной трети корня, наиболее эффективной активации раствора, прогнозированной редукции уровня контаминации, особенно в труднодоступных участках корневой системы, решение которых позволит добиться наиболее успешного и долгосрочного результата комплексного эндодонтического вмешательства.